Топливные насосы высокого давления распределительного типа учебное пособие

О книге : Пособие. Издание 2005 года.
Формат книги : файл pdf в архиве zip
Страниц : 46
Язык : Русский
Размер : 7.3 мб.
Скачивание : бесплатно, без ограничений и паролей

Топливные насосы высокого давления, ТНВД BOSCH VE, Lucas, НД распределительного типа для дизельных двигателей.

Топливные системы дизельных двигателей принято делить на непосредственного действия и аккумуляторные. В топливных системах непосредственного действия топливо подается от плунжера топливного насоса высокого давления (ТНВД) через топливопровод к форсунке. В аккумуляторных топливных системах плунжер ТНВД подает топливо в аккумулятор, а из аккумулятора в распылитель форсунки. Топливные системы дизелей можно также определить как разделенные и неразделенные.

Топливные насосы высокого давления делят на многоплунжерные, в которых на каждый цилиндр приходится один плунжер, и распределительного типа, в которых один или два плунжера обслуживают все цилиндры, для чего увеличивается цикличность работы плунжеров и вводится распределитель топлива.

По способу распределения топлива по цилиндрам распределительные насосы делятся на плунжерные, чаще одноплунжерные, и роторные. В плунжерных распределительных насосах топливо по цилиндрам распределяет плунжер-распределитель, в роторных — распределительный золотник.

В плунжерных распределительных насосах плунжер не только совершает поступательное движение, нагнетая топливо, но и вращается, распределяя топливо по цилиндрам. В роторных распределительных насосах топливо нагнетают плунжеры встроенные в ротор, а вращающийся ротор распределяет топливо по цилиндрам.

По методу дозирования, управления цикловой подачей топлива, распределительные ТНВД делятся на насосы с регулированием цикловой подачи отсечкой, дросселированием на всасывании, изменением хода плунжера и клапанным регулированием. Можно также разделить распределительные насосы по схеме привода плунжера : с внешним кулачковым профилем, с торцовым кулачковым профилем и с внутренним кулачковым профилем. Первые две схемы используют в плунжерных насосах, последнюю схему — в роторных.

В соответствии с описанной классификацией рассматриваемые распределительные насосы НД и VE относятся к плунжерным ТНВД с дозированием отсечкой подачи. Насосы НД имеют привод плунжера с внешним кулачковым профилем, в насосах VE используется торцовый кулачковый привод плунжера.

Фирма Bosch выпускает плунжерные распределительные топливные насосы высокого давления для дизельных двигателей с начала 1960 годов. Первый серийный насос Bosch EP/VM имел дозирование дросселированием на всасывании, в последующих моделях дозирование осуществлялось отсечкой. ТНВД Bosch EP/VM, как и все последующие модели плунжерных распределительных насосов EP/VA, EP/VH, EP/VE, имеют торцовый кулачковый привод плунжера.

С 1976 года фирма Bosch приступила к массовому производству модели Bosch VE (EP/VE). В настоящее время разработаны и производятся ТНВД Bosch VE с электронным управлением. Насосами VE, выпускаемыми как непосредственно фирмой Bosch, так и по лицензии японскими фирмами Zexel (Diesel Kiki) и Nippon Denso, оснащаются в настоящее время большинство дизельных двигателей легковых автомобилей и микроавтобусов.

В СССР первым плунжерным распределительным насосом, прошедшим многолетнюю проверку в эксплуатации, был насос ОНМ-4, выпускаемый Ногинским заводом топливной аппаратуры. В 1967 году промышленность СССР приступила к серийному выпуску плунжерных распределительных насосов НД. Насос НД-21/4, спроектированный Центральным научно-исследовательским и конструкторским институтом топливной аппаратуры автотракторных и стационарных двигателей с учетом преимуществ конструкций насосов ОНМ-4 и 1П4, является базовым насосом семейства НД.

Серийный выпуск роторных распределительных насосов был начат в США в начале 1950 годов Верноном Рузе, по имени которого был и назван насос «Roosa Master». Насос имел привод плунжеров с внутренним кулачковым профилем и дозирование дросселированием на всасывании.

В настоящее время семейство этих ТНВД выпускается фирмой Stanadyne Diesel System, ранее имевшей название Hartford Mashine Screw Company. Вначале выпускались насосы Roosa Master моделей CB и DB, затем были созданы семейства насосов DB2 и DM4. Фирмой разрабатываются и совершенствуются модели ТНВД с электронным управлением PCF, PCL.

Учебное пособие Топливные насосы высокого давления распределительного типа. Bosch. Легион-Aвтодата

  • Артикул: 899 — назовите при заказе по телефону
  • Издательство: Легион-Aвтодата
  • ISBN: 978-5-88850-427-7
  • Число страниц: 132
  • Формат: А4
  • Переплет: Мягкий

Учебное пособие Топливные насосы высокого давления распределительного типа. Bosch.

Использование дизелей в качестве автомобильных двигателей становится всё более распространённым. В последние несколько лет дизели стали более мощными, а уровни шума и выброса вредных веществ с отработавшими газами (ОГ) существенно снизились. Очевидно, что решающую роль в этом сыграло совершенствование топливной аппаратуры.

Основной вклад в широкое применение дизелей в каждом автомобильном секторе, включая высокооборотные дизели легковых автомобилей, внесён топливными системами фирмы Bosch.

В течение ряда лет роторные ТНВД распределительного типа были главной движущей силой в продвижении дизелей на автомобильный рынок. Этим топливным насосам присуща очень высокая точность дозирования топливоподачи, даже при малых цикловых подачах.

Постоянная эволюция элементов и систем электронного управления привела к высокой плавности работы автомобильных дизелей и исключительно высокой реакции на действия водителя.

Выпуск в 1996 году радиального ТНВД распределительного типа VP44, оснащённого электромагнитным клапаном высокого давления, открыл новые возможности, например, для снижения уровня шума путём использования предварительного впрыска топлива или регулирования величины цикловой подачи по отдельным цилиндрам с целью управления крутящим моментом двигателя.

В 1998 году распределительные ТНВД с аксиальным плунжером также стали выпускаться с электромагнитным клапаном управления подачей топлива.

Включение электронного блока управления в корпус ТНВД позволило создать систему управления, которая соединила технологические инновации с низкой её стоимостью.

В данном учебном пособии Bosch (Yellow Jacket «Expert Know-How on Automotive Technology») рассматриваются устройство и конструкция ТНВД распределительного типа, регулирование цикловой подачи топлива в котором обеспечивается дозирующей муфтой и отсечным отверстием или электромагнитным клапаном управления подачей, а также взаимодействие компонентов системы управления.

В разделе технологии технического обслуживания рассматриваются вопросы испытаний и настройки этих топливных систем.

Основы управление дизельным двигателем («Diesel-Engine Management») и электронное управление дизельным двигателем («Electronic Diesel Control EDC») детально описаны в отдельных выпусках серии.

Купить учебное пособие Bosch Топливные насосы высокого давления распределительного типа Вы можете в нашем интернет-магазине с доставкой Почтой России или курьером по Москве.

ПРИМЕРЫ ТЕКСТА ИЗ КНИГИ, БЕЗ ИЗОБРАЖЕНИЙЭТИ ЖЕ СТРАНИЦЫ В ПОЛНОЦЕННОМ ВИДЕ В ФОРМАТЕ PDF ДОСТУПНЫ ПО ССЫЛКЕ

Пример текста из раздела » ТНВД распределительного типа с электромагнитным клапаном управления подачей «:

Ступень высокого давления роторных ТНВД распределительного типа Насосная секция с радиальными плунжерами в ТНВД этого типа (рис.1) создаёт более высокое давление впрыска топлива, чем ТНВД с аксиальным плунжером Соответственно, они требуют большей мощности привода по сравнению с ТНВД, имеющими аксиальный плунжер (3,5 – 4,5 кВт против 3,0 кВт)Конструкция Насосная секция высокого давления с радиальными плунжерами (рис.2) приводится непосредственно валом привода ТНВДОсновными деталями насосной секции являются: Кулачковое кольцо 1; # Опоры 4 роликов и ролики 2; # Плунжеры 5; # Пластина привода; (Муфта привода) # Ротор-распределитель 6 # Вал ТНВД приводит пластину насосной секции посредством радиально расположенных направляющих прорезей, которые одновременно действуют как фиксирующие пазы для опор роликов Ролики перемещаются по внутренней поверхности кулачкового кольца, то есть по профилю внутренних кулачков вокруг вала привода ТНВДЧисло кулачков равно числу цилиндров двигателяРотор-распределитель приводится пластиной привода Плунжеры насосной секции, расположенные радиально по отношению к оси вала ТНВД (отсюда и название «Роторные ТНВД распределительного типа»), удерживаются в головке ротора-распределителяПлунжеры насосной секции упираются в опоры роликов и совершают возвратно-поступательное движение при перемещении роликов по профилям кулачковВеличина подъёма плунжеров равна 3,5 – 4,15 мм.

Пример текста из раздела » ТНВД распределительного типа с электромагнитным клапаном управления подачей «:

Регулирование угла опережения впрыска топлива Назначение Момент, в котором начинается процесс сгорания по отношению к положению поршня/коленчатого вала, оказывает существенное влияние на протекание характеристик двигателя, эмиссию вредных веществ и уровень шумаЕсли начало подачи топлива остаётся постоянным, то есть угол опережения впрыска при увеличении частоты вращения не регулируется, то число оборотов коленчатого вала в период между началом подачи и началом сгорания могло бы увеличиться до такой степени, что процесс сгорания не мог бы иметь место в нужный момент времениВ ТНВД распределительного типа с аксиальным плунжером и отсечными отверстиями автомат опережения впрыска поворачивает роликовое кольцо относительно кулачковой шайбы, так что начало подачи топлива происходит раньше или позже по отношению к положению коленчатого вала Взаимодействие между электромагнитным клапаном управления подачей и автоматом опережения впрыска регулирует величину угла опережения и характеристику впрыска таким образом, чтобы они соответствовали оптимальным характеристикам двигателяОбъяснение терминов Для понимания процесса регулирования угла опережения впрыска топлива необходимо дать объяснения основных терминовПериод задержки впрыска топлива Геометрическое начало подачи (SD на рис.1) происходит после момента закрытия электромагнитного клапана управления подачейВнутри топливной линии создаётся высокое давление и в тот момент, когда оно станет равным давлению начала подъёма иглы распылителя форсунки, начинается впрыск топлива (SI)Период времени между геометрическим началом подачи и началом впрыска называется периодом задержки впрыска (IL)Период задержки впрыска практически не зависит от частоты вращения вала ТНВД/коленчатого вала двигателяЭтот период главным образом определяется распространением волны давления по трубопроводу линии высокого давления, а время распространения волны давления определяется длиной трубопровода и скоростью звукаВеличина скорости звука в дизельном топливе приблизительно равна 1500 м/сЕсли частота вращения двигателя увеличивается, то увеличивается и угол поворота коленчатого вала во время периода задержки впрыскаКак следствие, распылитель форсунки открывается позже (по отношению к положению поршня в цилиндре двигателя), что крайне нежелательноПоэтому начало подачи топлива по мере увеличения частоты вращения должно происходить с опережениемПериод задержки воспламенения После впрыска дизельного топлива требуется определённое время для формирования топливовоздушной смеси и её воспламененияПериод времени от момента начала впрыска до начала воспламенения и горения (SC) называется периодом задержки воспламенения (IGL) Этот период также не зависит от частоты вращения и определяется следующими переменными: Воспламеняемостью дизельного топлива # (определяется цетановым числом); Степенью сжатия двигателя; # Температурой в камере сгорания; # Спектром распыливания топлива; # Степенью рециркуляции отработавших газов # Период задержки воспламенения находится в пределах 2 – 9 градусов поворота коленчатого вала1 Индикаторная диаграмма рабочего цикла при полной нагрузке и номинальной частоте вращения (не в масштабе) Рис.1 1 Давление сгорания 2 Давление сжатия SD Начало подачи TDC ВМТ поршня SI Начало впрыска топлива EI Конец впрыска IL Период задержки впрыска BDC НМТ поршня SC Начало процесса сгорания EC Конец сгорания IGL Период задержки воспламенения UMK1543-1E

Топливные насосы высокого давления распределительного типа. Robert Bosch GmbH

1 1 Топливные насосы высокого давления распределительного типа Robert Bosch GmbH

Смотрите еще:  Доверенность на использование печать образец

2 3 Использование дизелей в качестве автомобильных двигателей становится всё более распространённым. В последние несколько лет дизели стали более мощными, а уровни шума и выброса вредных веществ с отработавшими газами (ОГ) существенно снизились. Очевидно, что решающую роль в этом сыграло совершенствование топливной аппаратуры. Основной вклад в широкое применение дизелей в каждом автомобильном секторе, включая высокооборотные дизели легковых автомобилей, внесён топливными системами фирмы Bosch. В течение ряда лет роторные ТНВД распределительного типа были главной движущей силой в продвижении дизелей на автомобильный рынок. Этим топливным насосам присуща очень высокая точность дозирования топливоподачи, даже при малых цикловых подачах. Постоянная эволюция элементов и систем электронного управления привела к высокой плавности работы автомобильных дизелей и исключительно высокой реакции на действия водителя. Выпуск в 1996 году радиального ТНВД распределительного типа VP44, оснащённого электромагнитным клапаном высокого давления, открыл новые возможности, например, для снижения уровня шума путём использования предварительного впрыска или регулирования величины цикловой подачи по отдельным цилиндрам с целью управления крутящим моментом двигателя. В 1998 году распределительные ТНВД с аксиальным плунжером также стали выпускаться с электромагнитным клапаном управления подачей. Включение электронного блока управления в корпус ТНВД позволило создать систему управления, которая соединила технологические инновации с низкой её стоимостью. В данном учебном пособии Bosch (Yellow Jacket «Expert Know-How on Automotive Technology») рассматриваются устройство и конструкция ТНВД распределительного типа, регулирование цикловой подачи в котором обеспечивается дозирующей муфтой и отсечным отверстием или электромагнитным клапаном управления подачей, а также взаимодействие компонентов системы управления. В разделе технологии технического обслуживания рассматриваются вопросы испытаний и настройки этих топливных систем. Основы управление дизельным двигателем («Diesel-Engine Management») и электронное управление дизельным двигателем («Electronic Diesel Control EDC») детально описаны в отдельных выпусках серии.

3 2 Содержание 4 Обзор топливных систем дизелей 4 Технические требования 6 Обзор топливных систем с ТНВД распределительного типа 6 Области применения 6 Конструкции 8 Системы регулирования топливоподачи со спиральными кромками и отсечными отверстиями 10 Системы с электромагнитным управляющим клапаном 14 Система подачи (ступень низкого давления) 14 Топливный бак 14 Топливные линии 15 Фильтры дизельного 16 ТНВД распределительного типа с регулированием топливоподачи дозирующей муфтой и отсечными отверстиями 17 Применения и установка 19 Конструкция 22 Ступень низкого давления 25 Ступень высокого давления с распределительной головкой 34 Дополнительные управляющие устройства в ТНВД распределительного типа 34 Обзор 36 Регуляторы частоты вращения 43 Автомат опережения впрыска 46 Механические устройства корректирования крутящего момента (корректоры топливоподачи) 59 Выключатель по нагрузке 59 Потенциометр 60 Датчик подачи 61 Устройства выключения подачи (останов двигателя) 62 Электронное управление дизелей 65 Иммобилайзеры дизелей 66 ТНВД распределительного типа с электромагнитным клапаном управления подачей 66 Области применения 66 Конструкции 68 Установка и привод ТНВД 70 Конструкция и принцип действия 72 Ступень низкого давления 74 Ступень высокого давления ТНВД распределительного типа с аксиальным плунжером 78 Ступень высокого давления роторных ТНВД распределительного типа 82 Нагнетательные клапаны 83 Электромагнитный клапан управления подачей 84 Регулирование угла опережения впрыска 90 Электронный блок управления 91 Выводы 92 Распылители форсунок 94 Штифтовые распылители форсунок 96 Распылители соплового типа 100 Дальнейшее развитие конструкций распылителей 102 Форсунки 104 Стандартные форсунки 105 Форсунки со ступенчатым упором 106 Двухпружинные форсунки 107 Форсунки с датчиком подъёма иглы распылителя 108 Линии высокого давления 108 Арматура соединений линий высокого давления 109 Трубопроводы линий высокого давления 112 Электронное управление дизелей 112 Технические требования 112 Обзор систем управления 113 Системные блоки 114 ТНВД распределительного типа с аксиальным плунжером и отсечным отверстием 115 ТНВД распределительного типа с электромагнитным клапаном управления подачей (роторные и с аксиальным плунжером) 116 Технология технического обслуживания 116 Обзор 118 Испытание систем EDC 122 Стенды для испытаний ТНВД 124 Испытания ТНВД распределительного типа с аксиальным плунжером 128 Испытание форсунок 130 Аббревиатуры

4 Обзор топливных систем с ТНВД распределительного типа. Системы с электромагнитным управляющим клапаном 13 3 Схема топливной системы дизеля с радиальным ТНВД распределительного типа VP44 с управляющим электромагнитным клапаном и интегрированным электронным блоком управления PSG16 для двигателя и ТНВД Ω NMK1796Y

5 ТНВД распределительного типа с регулированием топливоподачи дозирующей муфтой и отсечными отверстиями. Конструкция ТНВД распределительного типа серии VE F с аксиальным плунжером и механическим регулятором частоты вращения 5 Компоненты ТНВД и их расположение Ω UMK0319-2Y Ω UMK1880Y 4 21 Рис.4 1 Рычаг управления (соединён с педалью акселератора) 2 Вал привода 3 Топливоподкачивающий насос 4 Шестерёнчатая передача привода вала регулятора 5 Ролик на роликовом кольце 6 Кулачковая шайба 7 Автомат опережения впрыска 8 Штуцер с дросселем перепуска 9 Узел центробежных грузов механического регулятора частоты вращения 10 Электромагнитный клапан отключения подачи (ELAB) 11 Плунжер 12 Корпус нагнетательного клапана Рис.5 1 Узел регулятора частоты вращения 2 Редукционный клапан 3 Вал привода 4 Роликовое кольцо 5 Автомат опережения впрыска 6 Штуцер с дросселем перепуска 7 Крышка регулятора 8 Электромагнитный клапан отключения подачи (ELAB) 9 Распределительная головка ступени высокого давления 10 Кулачковая шайба

6 Дополнительные управляющие устройства в ТНВД распределительного типа. Обзор 35 История создания ТНВД распределительного типа фирмы Bosch с механическими регуляторами частоты вращения æ SMK1800E

7 78 ТНВД распределительного типа с электромагнитным клапаном управления подачей. Ступень высокого давления роторных ТНВД распределительного типа Ступень высокого давления роторных ТНВД распределительного типа Насосная секция с радиальными плунжерами в ТНВД этого типа (рис.1) создаёт более высокое давление впрыска, чем ТНВД с аксиальным плунжером. Соответственно, они требуют большей мощности привода по сравнению с ТНВД, имеющими аксиальный плунжер (3,5 4,5 квт против 3,0 квт). Конструкция Насосная секция высокого давления с радиальными плунжерами (рис.2) приводится непосредственно валом привода ТНВД. Основными деталями насосной секции являются: ## Кулачковое кольцо 1; ## Опоры 4 роликов и ролики 2; ## Плунжеры 5; ## Пластина привода; (Муфта привода) ## Ротор-распределитель 6. Вал ТНВД приводит пластину насосной секции посредством радиально расположенных направляющих прорезей, которые одновременно действуют как фиксирующие пазы для опор роликов. Ролики перемещаются по внутренней поверхности кулачкового кольца, то есть по профилю внутренних кулачков вокруг вала привода ТНВД. Число кулачков равно числу цилиндров двигателя. Ротор-распределитель приводится пластиной привода. Плунжеры насосной секции, расположенные радиально по отношению к оси вала ТНВД (отсюда и название «Роторные ТНВД распределительного типа»), удерживаются в головке ротора-распределителя. Плунжеры насосной секции упираются в опоры роликов и совершают возвратно-поступательное движение при перемещении роликов по профилям кулачков. Величина подъёма плунжеров равна 3,5 4,15 мм. 1 Радиальный ТНВД распределительного типа с электромагнитным клапаном управления подачей Рис.1 1 Вал привода ТНВД 2 Топливоподкачивающий насос лопастного типа 3 Датчик угла поворота/частоты вращения вала 4 Электронный блок управления ТНВД 5 Насосная секция высокого давления с радиальными плунжерами 6 Вал-распределитель 7 Электромагнитный клапан управления подачей 8 Нагнетательный клапан Ω UMK1533-2Y

8 84 ТНВД распределительного типа с электромагнитным клапаном управления подачей. Регулирование угла опережения впрыска Регулирование угла опережения впрыска Назначение Момент, в котором начинается процесс сгорания по отношению к положению поршня/коленчатого вала, оказывает существенное влияние на протекание характеристик двигателя, эмиссию вредных веществ и уровень шума. Если начало подачи остаётся постоянным, то есть угол опережения впрыска при увеличении частоты вращения не регулируется, то число оборотов коленчатого вала в период между началом подачи и началом сгорания могло бы увеличиться до такой степени, что процесс сгорания не мог бы иметь место в нужный момент времени. В ТНВД распределительного типа с аксиальным плунжером и отсечными отверстиями автомат опережения впрыска поворачивает роликовое кольцо относительно кулачковой шайбы, так что начало подачи происходит раньше или позже по отношению к положению коленчатого вала. Взаимодействие между электромагнитным клапаном управления подачей и автоматом опережения впрыска регулирует величину угла опережения и характеристику впрыска таким образом, чтобы они соответствовали оптимальным характеристикам двигателя. Объяснение терминов Для понимания процесса регулирования угла опережения впрыска необходимо дать объяснения основных терминов. Период задержки впрыска Геометрическое начало подачи (SD на рис.1) происходит после момента закрытия электромагнитного клапана управления подачей. Внутри топливной линии создаётся высокое давление и в тот момент, когда оно станет равным давлению начала подъёма иглы распылителя форсунки, начинается впрыск (SI). Период времени между геометрическим началом подачи и началом впрыска называется периодом задержки впрыска (IL). Период задержки впрыска практически не зависит от частоты вращения вала ТНВД/коленчатого вала двигателя. Этот период главным образом определяется распространением волны давления по трубопроводу линии высокого давления, а время распространения волны давления определяется длиной трубопровода и скоростью звука. Величина скорости звука в дизельном топливе приблизительно равна 1500 м/с. Если частота вращения двигателя увеличивается, то увеличивается и угол поворота коленчатого вала во время периода задержки впрыска. Как следствие, распылитель форсунки открывается позже (по отношению к положению поршня в цилиндре двигателя), что крайне нежелательно. Поэтому начало подачи по мере увеличения частоты вращения должно происходить с опережением. Рис.1 1 Давление сгорания 2 Давление сжатия SD Начало подачи TDC ВМТ поршня SI Начало впрыска EI Конец впрыска IL Период задержки впрыска BDC НМТ поршня SC Начало процесса сгорания EC Конец сгорания IGL Период задержки воспламенения 1 Индикаторная диаграмма рабочего цикла при полной нагрузке и номинальной частоте вращения (не в масштабе) Ω UMK1543-1E Период задержки воспламенения После впрыска дизельного требуется определённое время для формирования топливовоздушной смеси и её воспламенения. Период времени от момента начала впрыска до начала воспламенения и горения (SC) называется периодом задержки воспламенения (IGL). Этот период также не зависит от частоты вращения и определяется следующими переменными: ## Воспламеняемостью дизельного (определяется цетановым числом); ## Степенью сжатия двигателя; ## Температурой в камере сгорания; ## Спектром распыливания ; ## Степенью рециркуляции отработавших газов. Период задержки воспламенения находится в пределах 2 9 градусов поворота коленчатого вала.

Судовые топливные насосы высокого давления

Главная > Реферат >Транспорт

Министерство образования и науки Украины

Херсонский государственный морской институт

Факультет заочного обучения

По дисциплине: Судовое ДВС

На тему: Топливные насосы высокого давления

студента __5__ курса ______

( Фамилия Имя Отчество )

Назначение топливных насосов высокого давления — впрыс­кивать топливо через форсунку в цилиндр двигателя. Требования, предъявляемые к ТНВД: способность создавать высокие давления [400—800 кгс/см 2 (40—80 МПа) при разделенных насосах и фор­сунках и до 1500—2000 кгс/см 2 (150—200 МПа) при неразделен­ной топливной аппаратуре]; точно дозировать цикловую подачу топлива g ц и регулировать ее величину при изменении режима работы двигателя; производить впрыск топлива в цилиндр при определенном положении кривошипа; установленные на одном двигателе ТНВД должны иметь одинаковую цикловую подачу. Неравномерность цикловых подач по отдельным цилиндрам до­пускается не более 5% на режиме полного хода.

Смотрите еще:  Ипотека возврат ндс

Величину цикловой подачи определяют по формуле:

где Nец — эффективная цилиндровая мощность, л. с. (кВт);

ge — удельный расход топлива, г/(э.л. с.-ч) [г/(кВт-ч)];

п — частота вращения коленчатого вала, об/мин;

т — коэффициент тактности (для четырехтактных двигателей

m = 2, для двухтактных n = 1).

Для мощного малооборотного двигателя g ц =35-:-40 г/цикл, для высокооборотных маломощных двигатели g u = 0,10-:-0,15 г/цикл.

При уменьшении мощности двигателя (при работе на малом ходу) цикловая подача уменьшается в 7—10 раз.

Привод ТНВД. Наибольшее применение имеет механический привод от кулачной шайбы. Топливные насосы, выполненные от­дельно для каждого цилиндра, приводятся от кулачных шайб, ук­репленных на распределительном валу двигателя. У многосек­ционных ТНВД, выполненных в виде общего блока, имеется собственный кулачковый вал для привода плунжеров насосных сек­ций. Расположение кулачных шайб на валу согласуется с распо­ложением кривошипов коленчатого вала, а их крепление должно давать возможность изменять положение кулачных шайб по от­ношению к кривошипам и таким образом изменять момент впрыс­ка топлива по углу п. к. в.

Кулачковый вал ТНВД должен делать один оборот за цикл, поэтому в двухтактных двигателях коленчатый и кулачковый ва­лы имеют одинаковую частоту вращения, в четырехтактных дви­гателях частота вращения коленчатого вала в 2 раза больше, чем у вала ТНВД.

Чтобы сохранить взаимное расположение кулачных шайб и кривошипов при изменении направления вращения коленчатого вала, у реверсивных двигателей устанавливают:

одну кулачную шайбу симметричного профиля и при реверсе разворачивают распределительный вал на угол, обеспечивающий сохранение момента впрыска топлива по углу п. к. в. при изме­нении стороны вращения;

две кулачные шайбы для каждого ТНВД: одну — для работы на передний ход, другую — работы на задний ход. При реверсе под ТНВД подводят соответствующую шайбу за счет осевого пе­редвижения вала.

Диаграмма топливораспределения изображает момент и про­должительность подачи топлива, выраженные в углах п. к. в. кривошипа (отсчет углов производится от ВМТ). Для осуществле­ния цикла смешанного сгорания необходимо обеспечить самовос­пламенение топлива до прихода поршня в ВМТ (за 1—2° п. к. в.). Период задержки самовоспламенения топлива

i = 0,001 -:- 0,010 с, поэтому впрыск топлива в цилиндр всегда производят до ВМТ. Угол поворота кривошипа (отсчитанный от ВМТ), при котором происходит впрыск топлива, называется углом опережения подачи топлива 0п. Его выбирают в зависимости от час­тоты вращения двигателя. В двигателях высокооборотных  оп= 20-:-30° п. к. в., в малооборотных

оп=4-:-8 о п. к. в.; общая про­должительность подачи топлива, выраженная в углах п. к. в., со­ставляет 15—25° п. к. в.

Способы регулирования цикловой подачи. Подача топлива осуществляется только на части хода плунжера, который назы­вается активным ходом, на остальной части топливо пере­пускается в приемную полость насоса.

Величину цикловой подачи можно регулировать тремя спосо­бами: изменяя начало подачи топлива; изменяя конец подачи топлива; применяя смешанное регулирование, при котором одновре­менно изменяется начало и конец подачи топлива.

На рис. 1 показаны диаграммы топливоподачи и графики пу­ти и скорости плунжера при различных способах регулирования цикловой подачи. Диаграмма и графики ( рис. 1, а) соответ­ствуют регулированию g ц за счет изменения начала подачи топлива. На всех режимах конец подачи насоса (КПН) про­исходит в точке 4.

Угол п. к. в., в течение которого происходит впрыск топлива, изменяется за счет изменения угла опережения подачи топлива  оп1 Наибольшей подаче соответствуют точки 1на диаграмме топливораспределения и на графике пути плунже­ра, угол опережения  оп1 и полезный ход плунжера h а1. При уменьшении g ц начало подачи последовательно смещается в точ­ки 2 и 3, угол опережения уменьшается до  оп2,  оп3 и полез­ный ход плунжера становится h а2 и h а3

Следовательно, регулирование величины цикловой подачи всегда приводит к изменению угла опережения подачи. Недостат­ком этого способа регулирования является малая скорость плун­жера в конце подачи, что приводит к «вялому» распыливанию в конце впрыска.

Рис. 1. Диаграммы топливоподачи

Диаграмма и графики (рис. 1, б) соответствуют регули­рованию за счет изменения конца подачи топлива. На­чалу подачи всегда соответствует точка 1, при уменьшении g ц конец подачи перемещается из точки 4 в точки 3 и 2 и соответ ственно изменяется полезный ход плунжера. Угол опережения по дачи топлива  оп на всех режимах остается неизменным. Ско рость плунжера во время впрыска высокая, вся порция топлива хорошо распыливается.

Диаграмма и графики ( рис. 1, в) соответствуют регули­рованию g ц за счет одновременного изменения начала и конца подачи топлива. Точки 16 соответствуют началу и концу пода­чи топлива при наибольшей величине g ц. При уменьшении g ц начало подачи последовательно смещается в точки 2 и 3, конец подачи — в точки 5 и 4. Так же, как при первом способе регу­лирования, изменение цикловой подачи приводит к изменению уг­ла опережения подачи.

Для двигателей, работающих с постоянной частотой вращения (дизель-генераторы), второй способ регулирования наиболее удо­бен, так как при неизменном скоростном режиме постоянный угол опережения подачи топлива обеспечит воспламенение топлива при одном и том же угле поворота кривошипа, что будет создавать одинаковые условия протекания процесса сгорания на всех режи­мах работы двигателя.

В двигателях средне- и высокооборотных, работающих на греб­ной винт с переменной частотой вращения, применение ТНВД с регулированием g ц за счет изменения начала подачи топлива обеспечит «мягкую» работу двигателя на всех режимах из-за ав­томатического изменения угла опережения подачи топлива при изменении скоростного режима.

У малооборотных дизелей, работающих с небольшим углом опережения подачи топлива (6—8° п. к. в.), регулирование g ц за счет изменения начала подачи топлива неоправданно, так как такие ТНВД на режимах среднего и малого ходов начинают по­давать топливо за ВМТ, что снижает экономичность двигателя.

Устройства, регулирующие величину цикловой подачи в насо­сах клапанного типа, могут выполняться в виде перепускных и отсечных клапанов, через которые на части хода плунжера топ­ливо перепускается в приемную полость насоса; в насосах зо­лотникового типа плунжер-золотник перепускает топливо в при­емное окно в начале или в конце своего хода.

ТНВД клапанного типа с регулированием цикловой подачи за счет изменения начала подачи. Основные элементы на­соса (рис. 2): плунжерная прецизионная пара, состоящая из плунжера 13 и втулки; толкатель 11 плунжера; возвратная пру­жина 12; нагнетательный 2, перепускной 4, предохранительный 1 клапаны.

Механизм регулирования (отсечное устройство) цикловой по­дачи состоит из перепускного клапана 4 с составным толкателем 5, 6, 7, двухплечего рычага 8, шарнирно связанного с толкате­лем, и эксцентрикового валика 9, на который опирается рычаг 5. Привод насоса — от симметричной кулачной шайбы 10, располо­женной на распределительном валу.

Принцип действия ТНВД. Плунжер посредством толкателя приводится в действие от кулачной шайбы. Непрерыв­ный контакт между роликом толкателя и кулачком обеспечивает­ся пружиной. При ходе плунжера вниз топливо через перепуск­ной (он же всасывающий) клапан 4 поступает в надплунжерное пространство. В начале хода клапан от­крывается давлением топлива, поступаю­щего к насосу по магистрали 3, дальней­шее его открытие происходит под действи­ем рычага 8 и толкателей. В начале нагне­тательного хода перепускной клапан от­крыт и топливо выталкивается в магист­раль 3- Начало подачи произойдет в мо­мент посадки клапана 4 на гнездо, конец подачи наступит, когда ролик толкателя 11 выйдет на выступ кулачной шайбы, а плун­жер насоса придет в ВМТ. Следовательно, активный ход плунжера h a начинается с момента посадки клапана 4 на гнездо и за­канчивается, когда плунжер приходит в ВМТ.

Регулирование цикловой подачи произ­водят, изменяя момент закрытия клапана 4, т. е., изменяя начало подачи топлива. Для всех насосов, установленных на дви­гателе, регулирование осуществляют с по­мощью тяги управления топливоподачей, которая перемещается вручную или регу­лятором частоты вращения. При переме­щении тяги эксцентриковые валики 9 всех

насосов поворачиваются на одинаковый угол, изменяя положе­ние точки опоры рычага 8. При перемещении точки опоры вверх клапан 4 позже садится на гнездо, активный ход плунжера и ве­личина цикловой подачи уменьшаются, одновременно уменьшается угол опережения подачи топлива.

Положение эксцентричной оси, при котором перепускной кла­пан остается открытым в течение всего нагнетательного хода, со­ответствует нулевой подаче насоса, при этом рукоятка управле­ния топливоподачей стоит в положении «стоп».

Регулирование угла опережения подачи топлива  оп происхо­дит автоматически при изменении величины цикловой подачи. Ес­ли необходимо изменить только угол опережения, разворачивают кулачную шайбу на валу; поворот кулака в сторону вращения вала увеличивает угол опережения подачи топлива за счет более раннего набегания кулака на ролик толкателя.

Рис. 2. Схема ТНВД клапанного типа с регу­лированием цикловой по­дачи за счет измене­ния начала подачи

Особенности конструкции ТНВД клапанного типа. По приве­денной схеме работают ТНВД двигателей фирмы «Зульцер» и за­вода «Русский дизель». Насосы выполняют одно-, двух- и трех-секционными. Привод осуществляется от симметричной кулачном шайбы (рис. 3). Шайба 2 разъемная (из двух половин), свобол но посажена на втулку 1; обе половины своими внутренними по верхностями плотно прилегают ко втулке и имеют в плоскости разъема небольшой установочный зазор; втулка 1 зафиксирована на распределительном валу 5 шпонкой 4 и штифтом в и имеет на конце резьбу, на которую навер­тывается гайка 3; торцовые по­верхности гайки, фланца втулки и шайбы — конусные, после ус­тановки кулачной шайбы под за­данным углом по отношению к кривошипу ее зажимают между конусными поверхностями флан­ца и гайки. Такое соединение по­зволяет легко изменять и точно устанавливать угол опережения подачи топлива. При реверсе разворачивают распределительный вал 5 по отношению к коленчатому на угол реверса (угол, на который поворачивают распределительный вал по отношению к коленчатому валу, для того чтобы фазы топливоподачи соответст­вовали стороне вращения).

Рис.73. Крепление кулачной шайбы ТНВД

Устройство односекционного насоса (рис. 4) двигателей заво­да «Русский дизель»: в стальном корпусе 11 гайкой 12 крепится

Рис. 4. Конструкция ТНВД клапанного типа

втулка плунжера 14, плунжер 15 опирается на толкатель 2; ролик толкателя 1 катится по кулачной шайбе и прижимается к ней пружиной 13; в корпусе насоса размещаются нагнетательный 10 и перепускной 8 клапаны; канал над клапаном 8 закрывается проб­кой 9, под которой ставят заглушку; клапан приводится в дейст­вие от составного толкателя (7 и 4) с регулировочным винтом 6, который фиксируется гайкой 5; отсечной рычаг 16 опирается на шейку 3 эксцентрикового валика 19, на конец которого насажен рычаг 18 для присоединения к общей тяге управления топливоподачей ,(17 — корпус толкателя).

Смотрите еще:  Договор подряда программист

ТНВД золотникового типа. В ТНВД этого типа плунжер-зо­лотник осуществляет подачу топлива и регулирует величину цик­ловой подачи. В верхней части плунжера отфрезерована фасон­ная выточка, образующая винтовую отсечную кромку, вертикаль­ный и кольцевой пазы. В зависимости от способа регулирования цикловой подачи изменяется расположение отсечных кромок. На рис. 5 а, б и в показано расположение отсечных кромок при ре­гулировании цикловой подачи изменением: конца подачи, начала подачи, начала и конца подачи.

Втулка имеет одно или два окна, сообщающихся с приемной полостью насоса; открытием и закрытием окон управляет плун­жер. На рис. 6, а показаны положения плунжера, соответству­ющие:

1 — положению плунжера в НМТ;

2 — началу подачи топлива;

3 — концу подачи.

Те же положения плунжера, но при повороте его на некото­рый угол показаны на рис. 6, б. Подача топлива к форсунке начнется после того, как верхняя кромка плунжера перекроет ок­на, конец подачи — когда винтовая отсечная кромка откроет ок­но и сообщит фигурный паз и надплунжерное пространство с приемной полостью насоса. Цикловая подача регулируется за счет разворота плунжера на некоторый угол, при этом изменяет­ся активный ход плунжера.

У плунжера ( рис. 6, а) верхняя кромка прямая, поэтому при его повороте начало подачи топлива остается неизменным; конец подачи регулируют за счет изменения относительного по­ложения отсечной кромки и перепускного окна. На рис. 6, в показана развертка верхней части плунжера, перемещение плунже­ра заменено перемещением пере­пускного окна относительно раз­вертки. Положение А соответст­вует полной подаче, Б —частич­ной, В — нулевой подаче, при ко­торой вертикальный паз распо­ложен против перепускного окна и надплунжерное пространство в течение всего хода сообщается с приемной полостью насоса.

Рис. 5. Расположение отсечных кро­мок у плунжеров ТНВД золотнико­вого типа

Рис. 6. Схема работы ТНВД золот­никового типа

Одна из конструкций механизма поворота плунжера (рис. 7): на втулку 1 свободно надета поворотная втулка 5 с закреплен­ным на ней зубчатым венцом 4; крестовина 6, отфрезерованная заодно с плунжером 2, входит в прямоугольные пазы поворотной втулки; зубчатая рейка 3, связанная с общей для всех ТНВД тя­гой управления топливоподачей, входит в зацепление с зубчатым венцом поворотной втулки; передви­гаясь с помощью тяги управления, рейки разворачивают все плунжеры ТНВД на одинаковый угол, изменяя величину цикловой подачи.

Рис. 7. Механизм поворота плунжера ТНВД золотниково­го типа

ТНВД двигателей Бурмейстер и Вайн типа ДКЗРН (рис. 8). В корпусе 1 насоса устанавливается съемная втулка 5 с запрес­сованной стальной тонкостенной втулкой 6, которая центрирует­ся сверху корпусом 4 всасывающего клапана. Верхняя часть кор­пуса входит в крышку 2. Внизу втулка имеет посадочный пояс для центровки в корпусе насоса. Два резиновых кольца 9, по­ставленных в канавки посадочного пояса, предотвращают попада­ние топлива в смазочное масло толкателя. Выше посадочного по­яса между втулкой и корпусом находится приемная полость на­соса. Через отверстие V топливо поступает в приемную полость, поднимается вверх к корпусу всасывающего клапана.

Отрицательный профиль кулачных шайб значительно сокра­щает время, отводимое на процесс наполнения, по сравнению с шайбами положительного профиля. Для улучшения наполнения при большей цикловой подаче топлива ТНВД имеет всасывающий пластинчатый клапан и окно во втулке.

Рис. 8. Конструкции ТНВД двигателя типа ДК3РН

Принцип действия насоса. При ходе плунжера вниз топливо поступает в корпус всасывающего клапана, отжимает вниз кольцевой пластинчатый клапан и заполняет надплунжерное прост­ранство насоса. Процесс наполнения продолжается в течение все­го нисходящего хода плунжера, в то время как в ТНВД золот­никового типа, не имеющих всасывающего клапана на участке хода плунжера, обратного полезному ходу, наполнение прекраща­ется, давление в надплунжерном пространстве снижается, что при­водит к парообразованию и ухудшению наполнения насоса.

В начале хода плунжера вверх происходит перепуск топлива через окно В, но как только торец плунжера перекроет окна и давлением топлива закроется всасывающий клапан, оно будет на­гнетаться по центральному каналу в корпусе 4 в трубопровод вы­сокого давления, откуда по форсуночным трубкам поступит к двум форсункам, установленным в каждой крышке цилиндра. После того как спиральные регулировочные кромки плунжера откроют окна В (надплунжерное пространство сообщится с прием­ной полостью А насоса), произойдет отсечка впрыска. При даль­нейшем ходе плунжера топливо через отверстие R будет сливать­ся в специальный бачок. Непрерывным потоком топлива удаля­ются из корпуса выделяющиеся пары топлива, что также обес­печивает хорошее наполнение насоса.

Регулирование цикловой подачи производится поворотом плун­жера, при этом изменяется конец подачи топлива.

Начало подачи топлива регулируют передвижением втулки 8 по отношению к плунжеру 7 насоса, положение которого опреде­ляется кулачной шайбой. При перемещении втулки вверх увеличи­вается продолжительность перепуска топлива через окно В в нача­ле восходящего хода, уменьшается угол опережения подачи. Втул­ку передвигают с помощью стяжных шпилек 3, ввернутых в то­рец втулки и проходящих через отверстия в крышке корпуса. По­ложение втулки в корпусе насоса по высоте фиксируется гайкой 5 за счет ее перемещения по резьбе крышки 2. На наружной по­верхности гайки отфрезерован зубчатый венец, в зацепление с ко­торым входит шестерня 10, выполненная заодно со шпинделем. Верхний конец шпинделя имеет квадрат и риску; на крышке 2 нанесена шкала, позволяющая производить точную регулировку начала подачи. Один поворот шпинделя изменяет высоту откры­тия окна на 2 мм. После перемещения гайки 5 затягивают гайки шпилек 3, прижимая втулку к торцу гайки 5.

При необходимости отрегулировать опережение подачи топли­ва на большую величину, чем позволяет смещение втулки насоса, разворачивают кулачную шайбу ТНВД.

Насосы золотникового типа могут выполняться одно- и много­секционными. ТНВД золотникового типа по сравнению с клапан­ными насосами отличаются простотой конструкции и регулирова­ния и большей надежностью в эксплуатации.

Настройка топливных насосов производится после установки насоса на двигатель, проверку настройки — после регулирования цикловой подачи отдельных ТНВД. Настройка ТНВД должна обеспечить: правильную установку кулачной шайбы; установку

Механизма регулирования цикловой подачи; установку «нулевой одачи».

Установка кулачных шайб должна обеспечить указанный за­водом-строителем угол опережения подачи топлива. Для ТНВД с регулированием начала подачи топлива на всех режимах оста­ется неизменным угол п. к. в., при котором происходит конец по­дачи топлива. Завод-строитель для этих насосов указывает угол п. к. в. (отсчитанный от ВМТ), при котором ролик толкателя насоса выходит на выступ кулака, а плунжер приходит

Установку кулачной шайбы производят в следующей после­довательности: валоповоротным устройством поворачивают ко­ленчатый вал и по маховику устанавливают кривошип на задан­ный угол; поднимают рычагом ролик толкателя насоса, поворачи­вают на валу кулачную шайбу так, чтобы ролик стал на выступ кулака, и в этом положении закрепляют шайбу; вынимают нагне­тательный клапан (рис. 9) и над плунжером 1 ТНВД устанав­ливают специальный линейный индикатор 2. Несколько раз про­ворачивая коленчатый вал вперед и назад, определяют наиболь­шее показание индикатора, соответствующее верхнему положению плунжера, по маховику определяют угол п. к. в., соответствующий этому положению, и, если необходимо, корректируют положение кулачной шайбы.

Проверка угла опережения подачи топлива проводится после закрепления кулачных шайб. Для насосов с регулированием на­чала подачи проверка производится для 100%-ной нагрузки.

Для клапанных насосов геометрическое начало подачи соот­ветствует посадке перепускного клапана ( рис. 2 и 4) на гнездо. В формуляре двигателя указывают величину хода плунже­ра ТНВД в момент начала подачи топлива и угол опережения подачи. Для проверки над перепускным клапаном 4 ставят вто­рой индикатор 3 ( рис. 9).

Последовательность работ при проверке угла опережения по­дачи топлива: рукоятку поста управления ставят на 100%-ную нагрузку; поворачивают коленчатый вал так, чтобы индикатор, установленный над плунжером, показал величину хода плунжера (указанную в формуляре) для начала подачи топлива; регулиро­вочным винтом 6 ( рис- 4) устанавливают величину открытия клапана 0,02 мм, для этого вначале кывертывают винт 6, удли­няя толкатель, затем ввертывают винт до остановки стрелки ин­дикатора, установленного над клапаном, и от этого положения поднимают клапан па 0,02 мм; по маховику снимают отсчет угла опережения подачи топлива  оп.

У ТНВД золотникового типа с регулированием за счет конца подачи неизменным остается угол опережения, по величине кото­рого производят установку кулачной шайбы. Началу подачи со ответствует момент закрытия верхней кромкой плунжера приемного окна. При сборке насоса на заводе это положение отмечает­ся по совпадению рисок на корпусе насоса и на плунжере.

Рис. 9. Схема установки индикато­ра ТНВД клапанного типа

Последовательность работ: кривошип устанавливают под уг­лом, равным  оп специальным рычагом поднимают толкатель так, чтобы совпали риски, отмечающие начало подачи. Свободно си­дящую на валу кулачную шайбу поворачивают до соприкоснове­ния с роликом толкателя и в этом положении закрепляют. Не­которые заводы рекомендуют устанавливать кулачную шайбу, принимая за исходную величину высоту подъема плунжера при положении кривошипа в ВМТ. Плунжер вместе с толкателем под­нимают тягой, при этом высоту подъема опреде­ляют по индикатору. После чего под ролик толкателя подводят кулачную шайбу и закрепляют.

А.Г. Миклос, Н.Г. Чернявская, С.П. Червяков «Судовые двигатели внутреннего сгорания», Л., «Судостроение», 1986

И.В. Возницкий, Н.Г. Чернявская, Е.Г. Михеев «Судовые двигатели внутреннего сгорания», М., «Транспорт», 1979

Похожие статьи:

  • Учебное пособие bosch Учебное пособие Электронное управление дизельными двигателями. Bosch. Легион-Aвтодата Артикул: 2768 - назовите при заказе по телефону Издательство: Легион-Aвтодата ISBN: […]
  • Пособие калашникова Калашникова, Прокофьева: Биология. Учебное пособие Аннотация к книге "Биология. Учебное пособие" Учебное пособие представляет собой комплексное издание, объединяющее русско-английский […]
  • П 101 судебная практика Обзор судебной практики рассмотрения районными (городскими) судами Калининградской области дел, связанных с применением законодательства об обороте земель сельскохозяйственного […]
  • Расписка в получении документов из налоговой Смогу ли я получить документы на 000 без расписки, только по паспорту. Потерял расписку из налоговой! Смогу ли я получить документы на 000 без расписки, только по паспорту. 1 ответ на […]
  • Как оформить кадастровый паспорт дома Кадастровый паспорт на дом, как выглядит и как его заказать Кадастровый паспорт на дом – это официальный документ, выдаваемый государственной кадастровой палатой, который подтверждает […]
  • Выплачивается ли компенсация по вкладам 1991 года Порядок компенсации вкладов 1991 года В Министерстве финансов сообщили о планах на ближайшие на ежегодное выделение 5,5 млрд. с 2017 по 2019 гг. на компенсацию советских […]
Перспектива. 2019. Все права защищены.